火车头也有通往大马士革的途径!

Theorem (Kraus Theorem): A map NAB\mathcal{N}_{A\rightarrow B} from a finite-dimensional Hilbert space HA\mathcal{H}_A to a finite-dimensional space HB\mathcal{H}_B is:

  • Convex linear:

    NAB(ipiρi)=ipiNAB(ρi)\mathcal{N}_{A\rightarrow B}(\sum_i p_i\rho_i)=\sum_ip_i\mathcal{N}_{A\rightarrow B}(\rho_i)

  • Completely positive:

    NAB(A)\mathcal{N}_{A\rightarrow B}(A) is positive for any positive (semi-) definite density operator AA.

    Furthermore, if we introduce an extra system RR of arbitrary dimensionality, it must be true that (INAB)(A)(\mathcal{I}\otimes \mathcal{N}_{A\rightarrow B})(A) is positive (semi-) definite for any positive (semi-) definite operator AA on the combined system RARA, where I\mathcal{I} is the identity map on HR\mathcal{H}_R.

    Remark: for

    A=(a11...a1kak1...akk)HRA,aijHA(INAB)(A)=(NAB(a11)...NAB(a1k)NAB(ak1)...NAB(akk))HRB\forall A = \begin{pmatrix} a_{11}&...&a_{1k}\\ \vdots&\ddots&\vdots\\ a_{k1}&...& a_{kk} \end{pmatrix}\in\mathcal{H}_{RA}, a_{ij}\in\mathcal{H}_A\\ (\mathcal{I}\otimes\mathcal{N}_{A\rightarrow B})(A)=\begin{pmatrix} \mathcal{N}_{A\rightarrow B}(a_{11})&...&\mathcal{N}_{A\rightarrow B}(a_{1k})\\ \vdots &\ddots &\vdots\\ \mathcal{N}_{A\rightarrow B}(a_{k1})&...&\mathcal{N}_{A\rightarrow B}(a_{kk}) \end{pmatrix}\in\mathcal{H}_{RB}

  • Trace preserving:

    0tr(NAB(ρ))10\leq tr(\mathcal{N}_{A\rightarrow B}(\rho))\leq 1

IF AND ONLY IF the map has a Kraus decomposition as follows:

NAB(ρ)=l=0d1VlρVl\mathcal{N}_{A\rightarrow B}(\rho)=\sum_{l=0}^{d-1}V_l\rho V_l^\dagger

satisfying l=0d1VlVl=I\sum_{l=0}^{d-1}V_l^\dagger V_l=I and ddim(HA)dim(HB)d\leq dim(\mathcal{H}_A)dim(\mathcal{H}_B).

Proof:

  • If the map has the form:

    NAB(ρ)=l=0d1VlρVl\mathcal{N}_{A\rightarrow B}(\rho)=\sum_{l=0}^{d-1}V_l\rho V_l^\dagger

    • Convex linear:

      NAB(ipiρi)=l=0d1VlipiρiVl=ipil=0d1VlρiVl=ipiNAB(ρi)\begin{aligned} \mathcal{N}_{A\rightarrow B}(\sum_ip_i\rho_i)&=\sum_{l=0}^{d-1}V_l\sum_{i}p_i\rho_i V_l^\dagger\\ &=\sum_ip_i\sum_{l=0}^{d-1}V_l\rho_i V_l^\dagger\\ &=\sum_ip_i\mathcal{N}_{A\rightarrow B}(\rho_i) \end{aligned}

    • Complete positive:

      For any valid density operator ρHA\rho\in\mathcal{H}_A, it’s positive (semi-) definite. Then:

      ψHRB,ψ(INAB)(ρ)ψ=ψl=0d1(IVl)ρ(IVl)ψ=ψl=0d1(IVl)ρ(IVl)ψ=l=0d1[ψ(IVl)]ρ[(IVl)ψ]=l=0d100\begin{aligned} \forall |\psi\rangle\in\mathcal{H}_{RB},\\ \langle\psi|(\mathcal{I}\otimes \mathcal{N}_{A\rightarrow B})(\rho)|\psi\rangle &=\langle\psi|\sum_{l=0}^{d-1}(I\otimes V_l)\rho(I\otimes V_l^\dagger)|\psi\rangle\\ &=\langle\psi|\sum_{l=0}^{d-1}(I\otimes V_l)\rho(I\otimes V_l)^\dagger|\psi\rangle\\ &=\sum_{l=0}^{d-1}[\langle\psi|(I\otimes V_l)]\cdot\rho\cdot[(I\otimes V_l)^\dagger|\psi\rangle]\\ &=\sum_{l=0}^{d-1}\geq 0\\ &\geq 0 \end{aligned}

      It’s because ρ\rho is positive (semi-) definite, so for φ=(IVl)ψ|\varphi\rangle=(I\otimes V_l)^\dagger|\psi\rangle, φρφ0\langle\varphi|\rho|\varphi\rangle\geq 0.

    • Trace preserving:

      tr(NAB(ρ))=tr(l=0d1VlρVl)=tr(ρl=0d1VlVl)=tr(ρ)\begin{aligned} tr(\mathcal{N}_{A\rightarrow B}(\rho))&=tr(\sum_{l=0}^{d-1}V_l\rho V_l^\dagger)\\ &=tr(\rho\sum_{l=0}^{d-1}V_l^\dagger V_l)\\ &=tr(\rho) \end{aligned}

      where we use tr(AB)=tr(BA)tr(AB)=tr(BA).

  • On the other hand, if the map is linear, completely positive, trace preserving, we prove that the map has Kraus decomposition.

    Let dAdim(HA),dBdim(HB)d_A\equiv dim(\mathcal{H}_A),d_B\equiv dim(\mathcal{H}_B) and RR is an auxiliary system with the same orthonormal basis with AA. Let ΓRA|\Gamma\rangle_{RA} denote the following unnormalized maximally entangled vector:

    ΓRAi=0dA1iRiA|\Gamma\rangle_{RA}\equiv\sum_{i=0}^{d_A-1}|i\rangle_R\otimes |i\rangle_A

    then we have

    (INAB)(ΓΓRA)=i,j=0dA1ijRNAB(ijA)(\mathcal{I}\otimes\mathcal{N}_{A\rightarrow B})(|\Gamma\rangle\langle\Gamma|_{RA})=\sum_{i,j=0}^{d_A-1}|i\rangle\langle j|_R\otimes\mathcal{N}_{A\rightarrow B}(|i\rangle\langle j|_A)

    Since ΓΓRA|\Gamma\rangle\langle \Gamma|_{RA} is positive semi-definite, since NAB\mathcal{N}_{A\rightarrow B} is completely positive, the RHS is positive semi-definite, too. So it can be diagonalized:

    i,j=0dA1ijRNAB(ijA)=l=0d1ϕlϕlRB\sum_{i,j=0}^{d_A-1}|i\rangle\langle j|_R\otimes\mathcal{N}_{A\rightarrow B}(|i\rangle\langle j|_A)=\sum_{l=0}^{d-1}|\phi_l\rangle\langle\phi_l|_{RB}

    where ddAdBd\leq d_Ad_B, dAdBd_Ad_B is the dimension of system RBRB, and ϕl|\phi_l\rangle does not necessarily have to be orthonormal.

    we expand the ϕl|\phi_l\rangle in terms of an orthonormal basis of RBRB:

    ϕRB=i=0dA1j=0dB1αijiRjB|\phi\rangle_{RB}=\sum_{i=0}^{d_A-1}\sum_{j=0}^{d_B-1}\alpha_{ij}|i\rangle_R\otimes|j\rangle_B

    let VAB\mathcal{V}_{A\rightarrow B} denote the following linear operator:

    VABi=0dA1j=0dB1αi,jjBiA\mathcal{V}_{A\rightarrow B}\equiv\sum_{i=0}^{d_A-1}\sum_{j=0}^{d_B-1}\alpha_{i,j}|j\rangle_B\langle i|_A

    Then we see:

    (IVAB)ΓRA=(Ii=0dA1j=0dB1αi,jjBiA)(k=0dA1kRkA)=i=0dA1j=0dB1k=0dA1αi,jkRjBikA=i=0dA1j=0dB1αi,jiRjB=ϕRB\begin{aligned} (\mathcal{I}\otimes\mathcal{V}_{A\rightarrow B})|\Gamma\rangle_{RA}&=(I\otimes\sum_{i=0}^{d_A-1}\sum_{j=0}^{d_B-1}\alpha_{i,j}|j\rangle_B\langle i|_A)(\sum_{k=0}^{d_A-1}|k\rangle_R\otimes|k\rangle_A)\\ &=\sum_{i=0}^{d_A-1}\sum_{j=0}^{d_B-1}\sum_{k=0}^{d_A-1}\alpha_{i,j}|k\rangle_R\otimes|j\rangle_B\langle i|k\rangle_A\\ &=\sum_{i=0}^{d_A-1}\sum_{j=0}^{d_B-1}\alpha_{i,j}|i\rangle_R\otimes|j\rangle_B\\ &=|\phi\rangle_{RB} \end{aligned}

    So we see that for all vector ϕRB|\phi\rangle_{RB}, we can find a linear operator VAB\mathcal{V}_{A\rightarrow B} such that (IVAB)ΓRA=ϕRB(\mathcal{I}\otimes\mathcal{V}_{A\rightarrow B})|\Gamma\rangle_{RA}=|\phi\rangle_{RB}.

    And we have:

    (iRI)ϕRB=(iRI)(IVAB)ΓRA=(iRI)(IVAB)j=0dA1jRjA=j=0dA1ijRVABjA=VABiA\begin{aligned} (\langle i|_R\otimes I)|\phi\rangle_{RB}&=(\langle i|_R\otimes I)\cdot(\mathcal{I}\otimes\mathcal{V}_{A\rightarrow B})|\Gamma\rangle_{RA}\\ &=(\langle i|_R\otimes I)(\mathcal{I}\otimes\mathcal{V}_{A\rightarrow B})\sum_{j=0}^{d_A-1}|j\rangle_R\otimes|j\rangle_A\\ &=\sum_{j=0}^{d_A-1}\langle i|j\rangle_R\otimes \mathcal{V}_{A\rightarrow B}|j\rangle_A\\ &=\mathcal{V}_{A\rightarrow B}|i\rangle_A \end{aligned}

    Finally we have:

    NAB(ijA)=(iRI)p,q=0dA1pqRNAB(pqA)(jRI)=(iRI)l=0d1ϕlϕlRB(jRI)=l=0d1(iRI)ϕlϕl(jRI)=l=0d1(Vl)ABijA(Vl)AB\begin{aligned} \mathcal{N}_{A\rightarrow B}(|i\rangle\langle j|_A)&=(\langle i|_R\otimes I)\cdot \sum_{p,q=0}^{d_A-1}|p\rangle\langle q|_R\otimes\mathcal{N}_{A\rightarrow B}(|p\rangle\langle q|_A)\cdot(|j\rangle_R\otimes I)\\ &=(\langle i|_R\otimes I)\cdot\sum_{l=0}^{d-1}|\phi_l\rangle\langle\phi_l|_{RB}\cdot(|j\rangle_R\otimes I)\\ &=\sum_{l=0}^{d-1}(\langle i|_R\otimes I)|\phi_l\rangle\cdot\langle\phi_l|(|j\rangle_R\otimes I)\\ &=\sum_{l=0}^{d-1}(\mathcal{V}_l)_{A\rightarrow B}|i\rangle\langle j|_A(\mathcal{V}_l)_{A\rightarrow B}^\dagger \end{aligned}

    We still need to prove that lVlVl=I\sum_{l}\mathcal{V}_l^\dagger\mathcal{V}_l=I. Since NAB\mathcal{N}_{A\rightarrow B} is trace preserving, then:

    tr(NAB(ijA))=tr(ijA)=δijtr(\mathcal{N}_{A\rightarrow B}(|i\rangle\langle j|_A))=tr(|i\rangle\langle j|_A)=\delta_{ij}

    Consider:

    δij=tr(NAB(ijA))=tr(lVlijAVl)=tr(lVlVlijA)=jAlVlVliA\begin{aligned} \delta_{ij}&=tr(\mathcal{N}_{A\rightarrow B}(|i\rangle\langle j|_A))\\ &=tr(\sum_{l}\mathcal{V}_l|i\rangle\langle j|_A\mathcal{V}_l^\dagger)\\ &=tr(\sum_l\mathcal{V}_l^\dagger\mathcal{V}_l|i\rangle\langle j|_A)\\ &=\langle j|_A\sum_l\mathcal{V}_l^\dagger\mathcal{V}_l|i\rangle_A\\ \end{aligned}

    That is, lVlVl=I\sum_l\mathcal{V}_l^\dagger\mathcal{V}_l=I.

Edited on Views times